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ON THE BEHAVIOR OF VELOCITY FLUCTUATIONS IN RAPIDLY ROTATING

FLOWS

S. S. GIRIMAJI* AND J. R. RISTORCELLI t

Abstract. The behavior of velocity fluctuations subjected to rapid rotation is examined. The rapid

rotation considered is any arbitrary combination of two basic forms of rotation, reference frame rotation

and mean flow rotation. It is recognized that the two types of rotating flows differ in the manner in which

the fluctuating fields are advected. The first category is comprised of flows in rotating systems of which

synoptic scale geophysical flows are a good example. In this class of flows the fluctuating velocity field

advects and rotates with the mean flow. In the rapid rotation limit, the Taylor-Proudman theorem describes

the behavior of this class of fluctuations. Velocity fluctuations that are advected without rotation by the

mean flow constitute the second category which includes vortical flows of aerodynamic interest. The Taylor-

Proudman theorem is not pertinent to this class flows and a new result appropriate to this second category

of fluctuations is derived, demonstrates that general fluctuating velocity fields are rendered two-dimensional

and horizontally non-divergent in the limit of any large combination of reference frame rotation and mean-

flow rotation. The concommitant 'geostrophic' balance of the momentum equation is, however, dependent

upon the form of rapid rotation. It is also demonstrated that the evolution equations of a two-dimensional

fluctuating velocity fields are frame-indifferent with any imposed mean-flow rotation. The analyses and

results of this paper highlight many fundamental aspects of rotating flows and have important consequences

for their turbulence closures in inertial and non-inertial frames.

Keywords: Taylor-Proudman theorem, rotating turbulence, vortical flows

Subject classification: Fluid Mechanics

1. Introduction. Many important flows of geophysical and technological interest are strongly influ-

enced by rotation. It is generally believed that the fluctuating velocity fields in rapidly rotating flows

are described by the Taylor-Proudman theorem (Greenspan, 1968, Tritton, 1977). The Taylor-Proudman

theorem and one of its consequences, the geostrophic balance, have long been used successfully in many

geophysical applications (Pcdlosky, 1982).

Flow rotation can take many forms most basic of which are reference frame rotation and mean flow

rotation (vorticity). In the former case, the flow occurs in a rotating reference frame, whereas, the latter

category corresponds to an imposed mean flow rotation. A general rotating flow can be an arbitrary com-

bination of these two basic flow types. In this article, the term rotating flow is used describe any flow that
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is influenced by rotation; the terms reference frame rotation and mean flow rotation arc the terms used to

indicate the two basic typcs of rotation. The distinction between the two basic forms of rotating flow is best

understood by considering one example of each flow: the homogeneous rotating shear flow and the elliptic

streamline flow (Blaisdell and Sharif, 1996). These are two benchmark flows used to study the effect of

rotation on turbulent fluctuations using direct numerical simulations (DNS). In the rotating homogeneous

shear, the velocity fluctuations are subjected to a constant mean shear in a rotating reference frame. An

elliptic flow is a homogeneous flow subjected to a constant mean strain and rotation in an inertial frame.

The elliptic flow derives its name from the elliptic shape of the mean streamlines when the magnitude of

mean rotation exceeds that of the mean strain. In the absence of strain, both the rotating and elliptic flows

have circular streamlines. When the magnitude of strain and rotation are equal, the flow is a pure shear and

the streamlines are rectilinear.

Despite the apparent similarities between the flows with reference frame rotation and flows with mean

flow rotation, the fluctuating velocity fields behave very differently, Blaisdell and Sharif (1996). The difference

between the two flows increases as the rotation rate increases despite the fact that the mean streamlines in

both cases become circular. An important kinematic distinction between the fluctuating fields in the two

cases can bc made in an inertial frame. In the rotating homogeneous shear the principal axes of the Reynolds

stresses rotate at the rate of the mean rotation. In the elliptic flow, the principal axes o] the Reynolds stresses

are fixed. It is an explanation of this physical observation that motivates aspects of this article.

The present state of development of the mechanics of rotating fluids does not distinguish between these

two types of rotating flows. One important practical consequence of this fact is that the turbulence models

calibrated in one class performs poorly in the other, Blalsdcll and Sharif (1996). There is clearly a strong

motivation for understanding the fundamental difference between the various classes of rotating flows and

enhancing our ability to model the effect of rotation.

The objective of this paper is to examine the behavior of various types of rotating flows in the limit

of rapid rotation. The article is concerned with fundamentals; the mathematical distinction and physical

interpretation of the various flow types. It is first recognized that the fundamental difference between the

various flows lies, as is suggested by the physical observation alluded to above, in the manner in which the

fluctuating fields are advected. Three types of fluctuations are identified. In the limit of rapid mean flow

rotation, we establish for each type (i) the mathematical description and (ii) its distinctive kinematical and

dynamical properties. The new results highlight some important fundamental aspects of rotating flows and

have important mathematical and phcnomenological implications for their turbulence modeling.

In Section 2 the fluctuating energy equation is examined in the limit of rapid rotation to derive suitable

approximations for the advection of fluctuating velocity and vorticity. In Section 3, the implications of these

approximations on the fluctuation vorticity and momentum equation are derived for each flow class. The

effect of reference-frame rotation and mean-flow rotation on two-dimensional fluctuations is examined in

Section 4. Important turbulence modeling implications and physical insights are discussed in Section 5. We

conclude with a summary of the results in Section 6.

2. Rapid rotation: velocity fluctuation magnitude. We first demonstrate that the magnitude of

the velocity fluctuations are, in the limit of rapid rotation, advected without change. This asymptotic result

is then used to derive the permissible representations for the advection of the velocity and vorticity fields



in therapidrotationlimit. Establishingtheformof theadvcctionof thevelocityimmediatelysuggestsa
typologyfor rotatingflowsbasedontherotationof thefluctuatingvelocityfieldor, aswill beshown,on
therotationof theprincipalaxesoftheReynoldsstresses.Thisisa moreuniquecharacterizationthanthe
currentdistinctionsof flowtypesbasedon themeanflowrotationor framerotation.A classificationof
rotatingflowsintoreferenceframerotationandmeanflowrotationisundesirablein asmuchasit involves
thedefinitionof thereferenceframein thedistinction.Moreover,sucha classificationcannotdistinguish
betweenthetwoflowswhenbotharcconsideredin aninertialreferenceframe.

Theevolutionequationfor thefluctuatingvelocityimpliedby the Navier-Stokesequationsin a non-
inertialreferenceframerotatingat aratef_i, isgivenby:

D
(1) D---_ui + ujui,j + (Wij + 2_ikjf_k)uj + Sijuj = -P,i + v ui,jj ,

where _tt represents the advection following a mean fluid particle:

D 0 Oui

(2) Dt -- Ot + VJ_xj"

Upper case letters represent mean quantities and lower case indicates fluctuations. The pressure in normalized

by the constant density. The kinematic viscosity is given by v and vijk represents the alternating tensor.

Subscript ,j, represents partial derivative with respect to the j direction. Repeated indices imply summation.

The mean strain rate, Sii, and the mean rotation rate, Wij, are given by

1 U _l(v ,t + ut,i); wit = ut,i).(3) Sij =

The mean intrinsic vorticity Wit is defined as the sum of the system rotation and mean flow rotation:

(4) Wij = Wit + 2Eikjf_k.

The equation for the magnitude of the velocity fluctuations is obtained from equation (1):

1 D

(5) (u,ui) + uj( iui),j ]= -wijuj i - sit t i - p,, u, +  i i,jt •
= --SitUjIQ -- P,i Ui -F Y Uit_i,j t •

This equation will be used to show that in the limit of rapid rotation that the magnitude of the velocity

fluctuations are approximately constant.

2.1. The rapid rotation limit. We arc interested in the evolution rate of thc magnitudc of the velocity

fluctuations in the limit of rapid rotation or, more precisely, large intrinsic vorticity. Throughout the paper,

as in the case of the Taylor-Proudman theorem, the rapid rotation limit implies:

S w
(6) _ << 1; _ << 1,

where, S, )4; and w represent, respectively, the norms of the mean strain rate, intrinsic mean vorticity

and fluctuating vorticity. The square of the fluctuating vorticity, w 2 can also be interpreted as the energy

cascade rate. The large intrinsic vorticity analysis includes, of course, that rapid reference frame rotation

as well as the large mean flow rotation cases. Our analyses arc to be understood, in the same sense as the

Taylor-Proudman theorem, as an asymptotic analysis in the limit specified.



Onnormalizingbytheintrinsicmeanvorticity,theequationforthemagnitudeofthevelocityfluctuations
becomes

1 D 1

(7) + = - - + ].

The terms on the right hand side of the above correspond to the production, pressure transport, and viscous

dissipation of the energy of the fluctuations. The production and dissipation will scale with the cascade rate,

which in the rapid rotation limit, is small (equation 6). The turbulent transport terms do not contribute

towards the overall growth of fluctuating energy as they merely transport energy from locations of production

to areas of dissipation. If production and dissipation arc individually small, these effects must be small. Thus,

on the time scale of the intrinsic vorticity

1 1 1 1

(8) _uju_,j-_ 0; _S_juiuj-_ 0; _ui ui,jj-_ 0; _(PUd,,-_ 0.

Thus, on the time scale of the intrinsic vorticity the magnitude of fluctuating velocity following a fluid

particle changes slowly:

1 D

(9) 14; Dt (uiui) _ O.

That is, the magnitude of the velocity is approximately constant. Given that the magnitude of the velocity

is approximately constant, the advection must be of the general form

D

(10) _-_ui _ 74ijuj,

where 7_ij is a general antisymmetrie tensor so that, in forming the energy equation, T_ijuju i = 0. The form

of (10) is, of course, recognized as the pure rotation of a vector field.

The arbitrary rotation tensor _ij can be decomposed into mean and fluctuating :

(11) TQj = P_j + rij, (rij) = 0,

where P_j represents a systematic (mean) rotation of the velocity field while rij represents random rotations

about thc mean rotation by the fluctuating field. The mean rotation rate can be expected to scale with the

mean intrinsic vorticity and the random rotation with the fluctuating vorticity:

(12) lrl ,,_ Iw-_l<< 1,
IR! W

as is consistent with the inequalities already assumed. Therefore, on the timescale of intrinsic vorticity,

D

(13) D--_ui _ Rijuj.

This equation, describing the pure rotation of the velocity field at some as of yet unspecified rotation rate,

is the fundamental equation from which we shall obtain several results pertinent to flows undergoing rapid

rotation. The rotation rate Rij will be called the kinematic rotation tensor.

The implication of equation (13) for the rotation of Reynolds stresses is straightforward:

(14) Dn--t (uiuj) = Rik (ujuk) + Rjk (UiUk).



Thekinematicrotationrateof thefluctuatingvelocityfieldis,on thctimescaleof therotation,equalto
therotationrateof theprincipalaxesoftheReynoldsstresses.Thus,statistically,R_j can bc understood

or even called the rotation rate of the Reynolds stresses.

The implication of equation (13) for the fluctuating vorticity is easily obtained by taking its curl:

D 1 1 - Rju_,j).
(15) -_wi _ _(Wj - Rj)ui,j + Wijwj = _(Wjuj,i

Note that the advection of the vorticity is not a simple rotation: there are very complicated production terms

involving the fluctuating velocity gradients. In the above equation, the following relationships between an

antisymmetric tensor and its associated axial vector have been used:

1

(16) W_ = eijkWkj; W_j= - _eijkWk;

1

02 i _- EijkLdkj; _2ij = -- _ijk_dk;

1

_:_i : _ijkRkj; Rij-_ --_ijkRk.

To summarize: In the limit of rapid rotation we have shown that the advection of the velocity approaches

a pure rotation. There are two important implications of this result. The first is that the rotation of the

principal axes of the Reynolds stresses is a very close approximation to the rotation rate of the velocity field.

Secondly, an expression for the advection of the vorticity, consistent with a pure rotation of the velocity

field, can be obtained. The advection of vorticity is not a simple rotation: there are source terms that may

contribute to the growth of enstrophy. Equations (13) and (15) form the foundation of this paper, as they

will be used in the next scction in the momentum and vorticity equations to infer important properties of

the fluctuating fields in the limit of rapid rotation.

2.2. Types of kinematic rotations. In the limit of rapid rotation it was shown that the advection

of the velocity field is given by a pure rotation,

D

(17) -_u_ _ Rijuj

wherc R/j, by definition, is the rotation rate of the Reynolds stress tensor. Wc will now consider thc values

of R/j associated with reference framc rotation, mean-flow rotation and arbitrary rotation. The value of

R/j will depend upon the reference frame of observation. In the inertial frame, it will bc seen that Rij = 0

corresponds to mean-flow rotation and R/j = W_j corresponds to reference frame rotation. Knowing the

kinematic rotation rate tensor, we obtain expressions for the advective derivatives of velocity and vorticity

for the various flow classes. These expressions will bc used to approximate the advcctive derivatives in the

rapid rotation analysis of the vorticity and momentum equations.

Reference-frame rotation. It is known from obscrvations of rotating shear flows that thc Reynolds stress

axes of this type of flow are fixed in a rotating reference frame. Therefore,

D D

In an inertial frame, the Reynolds stress tensor rotates with the mean flow at the rate of mean vorticity.

If Wij is the mean flow rotation tensor in an inertial frame then

D D 1

(19) Rij = W_j =_ -_ui _ Wijuj, -_wi _ Wijwj = _Wjwj,i.



AsthesefluctuationsarcAdvectcdWith theMeanflowRotationtheywill bedenotedAWMRfluctuations.
ThemeanOldroydderivativeis a formof thc substantialderivativeconvectingand rotating with the

mean flow. The advective derivative in a rotating reference frame is exactly equal to the Oldroyd derivative

in an inertial frame. For the AWMR fluctuations, the advective derivative is negligible in the rotating frame

and the Oldroyd derivative is negligible in the inertial frame.

Mean-flow rotation. In the elliptic mean flows already mentioned, it has been observed that the principal

directions of the Reynolds stress are fixed in an inertial frame. The rotation rate of the Reynolds stress is

zero, thus

D D 1 1 w
(20) /_j----0 =v _-_ui_0, _-_wi,,_ --

As these fluctuations are Advected With Out the Mean flow Rotation thcy will be denoted AWOR fluctua-

tions.

General mean flows. Fluctuations in the presence of arbitrary combinations of reference frame rotation

and mean flow rotation are of substantial intcrcst. The rate of rotation of the Reynolds stresses is not,

a priori known. Let the arbitrary rotation rate of the Reynolds stresses in a given frame of reference be

denoted by R_j. In that frame of reference, the fluctuating field description is

(21) Rij = Ri_;
D

a ,

-_u_ _ R,_u_,

D 1 1 R_u_,j).-5_ _ _(wj - R_)u_,j + W,j_j = _(Wjuj,_ -

This class of fluctuations will be called AWAR fluctuations since it represents Advection With Arbitrary

Rotation.

Examples of different classes. The specification of a mean flow rotation does not constitute sufficient

information to uniquely determine, a priori, the type of fluctuating velocity field. However, a classification

of flow type is possible in many important flows based on experimental/numerical observation. Synoptic

scale geophysical flows in the atmosphere are very visible examples of AWMR fluctuations. All flows in

rotating systems, including many technological processes crystal growth, centrifugal separation, rotating

turbomachinery -- are likely to fall into the AWMR category. In contrast, flows in stationary systems subject

to mean flow rotation may belong to the AWOR category. Examples of such flows arc many of the vortical

aerodynamic flows the trailing vortex, the flap-edge vortcx, leading-edge vortcx -- and elliptic flows

(Blaisdell and Shariff, 1996). Examples of AWAR category include elliptic flows in rotating reference frames,

cylindrical Couette flow with the two cylinders rotating at different speeds and a cyclone which rotates with

its characteristic angular speed on the rotating frame of the earth. In these flows, both reference-frame and

mean-flow rotation are important.

3. Rapid rotation limit: vorticity and momentum equations. In the previous section a possible

typology for rotating flows according to the value of the rotation tensor,/_j, in the ansatz for the advective

derivative of the velocity field, was indicated. This naturally suggested three different types of fluctuations

which we have labelled AWMR, AWOR and AWAR. In this section the properties of AWMR, AWOR and

AWAR fluctuations are, without regard to their physical origin, investigated. The kinematic ansatz for the



advectivederivativewill nowbeused,forthefirsttimc,in thedynamicalequations.It shouldbeemphasized
thattheheobjectiveofthissectionisnotan a priori categorization of a particular rotating flow, but rather

an a posteriori examination of important properties of the diverse fluctuating fields. The implications for

the dynamical equations of diverse Rij are explored.

3.1. AWMR fluctuations. In this subsection AWMR fluctuations are investigated. The analysis for

thc AWMR fluctuations is, in fact, a derivation of the wcll known Taylor-Proudman theorcm, Proudman

(1916), Taylor (1917), Greenspan (1968), Tritton (1977). This will serve as a familiar introduction and

set precedent for proccdures that will be used to obtain results in subsequent devclopmcnts. The Taylor-

Proudman result will be derived in the familiar rotating frame here and in an inertial frame in Section

3.3.

Thc incompressible Navier-Stokes equations in a non-inertial reference frame rotating with an angular

velocity 12" is given by

(22) u_ _-ujui, j + 2_ikpnku p --p*,i Jr---- l/Ui _jj •

The instantaneous values of velocity and pressure are represented by u_ and p* respectively. In this section

only, asteriks will be uscd to represent dimensional quantities. Dimensionless variables are representcd by

the symbols without asteriks.

The equations are made nondimensional with length and velocity scales g and uc respectively. The time

scalc % is formed from g and uc. The magnitude of the reference frame rotation rate is given by ft_. The

Navier-Stokes equations become:

(23) [T-_-_ ] ui + [Ro] ujui,j ÷ 2eikpf_kUp -- 1ucf_ p,i + [Ek ]u_,jj .

Here the Ekman number, Ek = _, and the Rossby number, Ro -- _no_, represent, respectively, the relative

importance of viscous and inertial forces to Coriolis forces. It is also useful to view the Rossby number as

an indication of the magnitude of flow vorticity relative to the background vorticity due to frame rotation.

Rapid rotation limit of the vorticity equations.. Taking the curl of the Navier-Stokes equations one

obtains the vorticity equation

1

(24) [T---c-_] &i + [Ro] ujwi,j = [Ro] _jui,j + 2_ju_,j + [Ek] w_,jj,

where Wk = ekiqUi,q. In the limit of rapid rotation (f_ --* oo) the Rossby and Ekman numbers vanish and

the fluctuating vorticity equation implied by the Navier-Stokes equation becomes

1 D

The advection of the fluctuating vorticity for this class of fluctuations can be approximated to zero as given

in equation (18). This approximation is valid for vorticity fluctuations whose timescale % is much larger

than the timescale of the rotation of reference frame (1/g_c), leading to vcl2c ---*oo and

(26) 2_ju_,j --* 0.

This is the Taylor-Proudman theorem and it is a statement valid only for those vorticity and vclocity fluctu-

ations that evolve slowly with respect to the frame rotation rate. It is valuable to consider the geophysical



pointofview.A flowstructureconsistentwith2_jui,j --_0 isnecessaryto keep,asisobservedin nature,
therelativcflowvorticity(Rossbynumber)small.

TheTaylor-Proudmanresulthasseveralimportantconsequences(Lighthill,1966,Greenspan,1968,
Tritton,1977).Withoutlossof generalityassumethat theaxisof theframerotationcoincideswith the'3'
coordinateaxis.TheTaylor-Proudmanresultindicatesthat

(27) _jui,j _ 0 ::_ Ui, 3 : 0 :

the fluctuating field is invariant along the axis of rotation. The fluctuating velocity field is two-dimensional

ui = ui(xl, x2). Since u3,3 = 0, the continuity equation yields

(28) u1,1 + u2,2 = 0.

The flow is nondivcrgent in planes perpendicular to flj.

of the momentum equations. In the rapid frame rotation limit, the momentumRapid rotation limit

equation reduces to

(29) [ ]ui + 2eikp_kUp = ucflc P,i.

The advection of the velocity can be approximated as zero; for AWMR fluctuations P_j = 0 in the rotating

frame equation (18). More precisely, for fluctuations that evolve slowly in the rotating frame, Tc_c --_ OC

and 1[7-_-_]/ti ---*0, leading to

1

(30) 2eikp_kUp = -- Ucglc P,i-

The scales of the fluctuating motion that evolve slowly in the rotating frame satisfy, to leading order, the

geostrophic balance -- a balance between Coriolis and pressure forces. Using the Poisson equation for

pressure the pressure can be shown to scale as p* _ u_tJ. As a conscqucnce of the geostrophic balance the

flow is described by a streamfunction. Multiplying the geostrophic balance by Eiq_l and contracting leads,

in dimensional variables, to

(31) up : _,qk-_ p ,,+ _k h-_

The fluctuating AMWR velocity field is, to leading order, described by a streamfunction:

(32)
^

up = ¢pqkflk¢,q + Wgi3;

where ¢ -- ¢ (x, y). The streamfunction and pressure field arc proportional; isobars and streamlines arc

parallel. Additional details can be found in Ristorcelli (1997).

In the present rotating coordinate system, AWOR fluctuations undergo a kinematic rotation. Therefore,

AWOR fluctuations evolve on a time scale of the order of hZ,1 leading to _-_ ---, 1. This is not consistent

with rcftc --_ _ as required for the Taylor-Proudman theorem.



3.2. AWORfluctuations. TheAWORfluctuationsarenowinvestigated.Thisis thetypeof fluctu-
ationsinwhichthevelocityisadvectedbut not rotated by the mean flow; Rij = O. These fluctuations are

most conveniently analyzed in an inertial reference frame. The momentum equation for the fluctuations is

given by

(33) Du* ......
D---t-+ ujui'J + uk [S_k + Wi*k] = - P '_ + _"ui 'JJ '

where _7 indicates derivative following a mean fluid particle. The similarity with the momentum equations

in the rotating frame (22) and (33) is clear: the mean vorticity now plays the role of the Coriolis force. It is

important to note that the mean vorticity is twice the angular rotation: W; -- 212k.

Rapid rotation limit of the vorticity equations. Taking the curl of the momentum equation produces the

equation for fluctuating vorticity:

(34) Dw_ ..........
D---t-+ uJwi 'j = wJui 'j + Wj u, ,j + wj (S_j + W,j) + u w i ,jj ,

Normalizing the fluctuating vorticity equation with characteristic length, time, velocity scales, and charac-

teristic mean rotation rate g, To, Uc, Wc produces

1 ]Dwi S_(35) + [Row]uk ,,k = Wju,, + +

The corresponding Ekman and Rossby numbers are Ek = F_e , and Ro = _ Here W 2 = W, jWij andc Wet'

S 2 = S_jS, j. The ratio [Sc/Wc] determines the ellipticity of the flow. In the limit rapid mean rotation or

large mean vorticity, Wc -_ c_, the Ekman, Rossby and ellipticity parameters vanish and

1 D_;i

(36) [T-_]--D- _- _ Wjui,j +Wijwj

If the AWOR ansatz, equation (20), for the advective derivative of the vorticity fluctuations is applied,

Dw i = 1Wjuj, i one obtains the result

(37) Wjui,j ---* O.

This is equivalent to the Taylor-Proudman result with Wy replacing _)y. The velocity field is again two-

dimensional being independent of the coordinate along the axis of the mean vorticity. The flow is also

nondivergcnt in planes perpendicular to the rotation.

Rapid rotation limit of the momentum equations. While both AWMR and AWOR fluctuations are both

independent of the coordinate along the axis of rotation and are both horizontally nondivergent, they arc

very different in other important aspects. This difference is seen in the form of the advective derivative

which manifests itself dynamically in a different "geostrophic" balance of the momentum equations.

The momentum equations for the AWOR fluctuations, in the large mean vorticity limit, arc

(38) [ 1 D + uk = -

If the AWOR ansatz, equation (20), for the advective derivative of the velocity fluctuations is made one

obtains the following balance

1
(39) Uk Wik = _eikqWaUk ,._ -- P,i .



Contracting the above balance with cijqWq yields the streamfunction for the AWOR fluctuations:

(40)

which in dimensional units becomes

(41)

uj = 2E_jqWqp,, + uqWqWj.

. • w;w;
uq= 2Eikq _ p*,i + uk _ •

Pressure plays the role of a streamfunction as it did in the geophysical case. However, therc is a factor of

four difference in the prcfactor of pressure in the two cascs, equations (32) and (41). This rcflects important

dynamical differences between AWMR and AWOR fluctuations.

Consider the AWMR fluctuations of §3.1 in an inertial frame. Due to their rotation, they change rapidly

on a timescalc, re, which is small Tc "" _. For AWMR fluctuations, %We --_ 1 and the analysis of the

present section is not possible as %We ---* oo is required. Thus AWMR and AWOR fluctuations, despite

the same implications for the vorticity equation and a "twodimensionalization" of the flow are distinct and

mutually exclusive classes of velocity fields.

3.3. AWAR fluctuations. The behavior of AWAR fluctuations in an inertial refcrcnce framc is now

considered. The fluctuating velocity field evolves according to

D . * * *

(42) _tu, + u_u,,j + nT_u;+ SSu; = -p*,, +. u, ,..

In the limit of rapid rotation, the effects of mean strain ratc, viscosity and nonlinearity can bc neglected

leading to

D
(43) DtUi + Wiju j _ -p* •

The fluctuating vorticity equation in the rapid mean rotation limit is

D ,
(44) --_w, = W;u;,j + w;W_.

These equations are now examined by invoking the approximations for the advective derivatives given in

equation (21).

Rapid rotation limit of the vorticity equations. Thc advection of the AWAR vorticity fluctuations is

approximated as, equation (21):

D . 1 .
_(w_ - n;)u L + W,y_.(45) _-_wi = *

When this simplification is substituted into equation (44) we obtain:

(46) (IV] + n_)u;,j ._ O,

for all combinations of W_ and R_. If Wj* and R_ are coincident with the 3-axis, then the fluctuating velocity

field is two-dimensional and horizontally non-divergent:

(47) * =0; * + * =0,Ui,3 Ul,1 U2,2

as is the case for the Taylor-Proudman relevant to AWMR fluctuations.
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Rapid rotation limit of the momentum equations.

velocity can bc approximated as, equation (21),

(48)

From equation (43) one obtains

(49)

The advective derivative of the AWAR fluctuating

D

(n 5 + W#)uj -p,,.

This is a "geostrophic" balance for AWAR fluctuations. Such balance of the momentum equations, as shown

in §3.1 and §3.2, leads directly to a streamfunction representation for the components of the velocity in

planes perpendicular to the axis of rotation. The streamfunction representation is, of course, due to the

horizontal nondivergence of the flow.

The results for AWOR fluctuation can be obtained from above results by recognizing that for AWOR

fluctuations Ri_ = 0. The results for the AWMR fluctuations, thc Taylor-Proudman theorem in an inertial,

is now derived.

AWMR fluctuations in an inertial frame. The advection of these fluctuations in the inertial frame is

given by (equation 19):

D . D ....
(50) = wi* u;; = w,y ,

Here W_ is thc mean-flow rotation rate. This indicates that the Oldroyd derivative of these fluctuations are

small in the inertial frame, consistent with the advectivc Lagrangian derivative being small in the rotating

frame. By recognizing R_ = W;; in equations (46) and (49), we obtain the Taylor-Proudman theorem and

its corresponding geostrophic balance in an inertial reference frame:

(51) W;u*,j _ 0; 2W;*ju; = e,pjW;u; ._ -p,*.

That this result is identical to the Taylor-Proudman geostrophic balance equation (30) is seen readily by

recognizing that W_ = 2f_.

4. Discussion. Some useful insights into the results derived arc now given. Further, the implications

of the results for developing turbulence models for rotating flows is also discussed.

Kinematics of the fluctuating vorticity field. The fluctuating vorticity equation indicates that all classes

of fluctuating velocities are rendered two-dimensional in the rapid rotation limit (equations 47, 46). The

two-dimensionality of the fluctuating velocity field has important implications. If the mean vorticity vector

is oriented along the 3-axis, then the fluctuating velocity field is such that ui,3 -- 0. Thus W3ui,3 ._ 0 for

all fluctuations in the limit of rapid rotation. When this result is introduced into the vorticity evolution

equation (44), we obtain

D

(52) _-_w_ = W3u_,3 + wjW_¢ _ wjW_j.

The fluctuating vortieity field of a two-dimensional flow undergoes a kinematic rotation in the limit of rapid

rotation. The rotation rate of vorticity is equal to the mean flow rotation rate. In associated enstrophy

equation is

D

(53) _-_ (wio;,) = wiwjWij = O.

11



Thelastequalityfollowsfromtheantisymmetryof14_j.Onthetimescalerotation,theenstrophyisconstant.
If thefluctuatingvorticityis smallin comparisonto themeanintrinsicvorticityat the initialtime,it will
continueto besmallonthetimescaleoftheintrinsicvorticity.Thus,afluctuatingvelocityfieldthatsatisfies
therapidrotationlimit assumptionsspecifiedinequation(6)willpreservethevalidityoftheseassumptions
forall time.

Thepressure-rotation balance. In a general rotating flow, the geostrophic balance between the pressure

and rotation-related forces depends upon the kinematic rotation rate of the fluctuating velocity field (equation

49). Consider AWMR and AWOR fluctuations in an inertial frame, subject to identical mean-flow vorticity

W_. The fluctuating pressure gradients for the two cases are:

(54) AWMR: - p,i _ 2Wijuj;

AWOR: -p# _ W_juj.

For a given intrinsic mean-vorticity, it takes twice as large a (fluctuating) pressure force to sustain AWMR

velocity fluctuations, as it does to maintain AWOR velocity fluctuations. The additional force is required in

the AWMR case to rotate the orientation of the velocity field.

Two-dimensional fluctuations. One wcll known result in the mechanics of rotating fluids, (Taylor, 1917,

Lighthill, 1966, Hide, 1977) is that two-dimensional velocity fields are frame-indifferent. Any two-dimensional

fluctuating velocity field, ui = ui(xl,x2), that is a solution of the Navier-Stokes equations in an inertial

system is also a solution of the Navier-Stokes equations in a rotating frame for any arbitrary (constant)

rotation rate. The pressurc fields for the two evolutions are not the same but proportional by a constant

scale factor.

In the previous section it has been seen that in the limit of rapid rotation AWMR, AWOR and AWAR

fluctuations become independent of the coordinate along the axis of rotation two-dimensional. Thus

AWMR, AWOR and AWAR fields are frame indifferent. The shortest proof of the material frame indifference

of two-dimensional fields uses the vorticity equation. The exact fluctuating vorticity equation for arbitrary

(small or large) frame or mean flow rotation rate, modulo viscosity, is

D

(55) b-_, + uj_,,j = [_j + wj]u,,j + _jw_.

If the flow is two-dimensional independent of coordinate along the axis of rotation then Wjui,j = (Wj +

2_j)ui,j = 0 and the vorticity equation becomes

D
(56) _-_wi + ujwi,j = wjui,j + Wijwj.

The vorticity equation and the kinematic Biot-Savart relation V2ui -- EijkWk,j are all that are required to

evolve the flow. The vorticity equation and Biot-Savart are both independent of the rotation the reference

frame, _j. The flow is frame-indifferent in the presence of mean vorticity.

A two-dimensional fluctuating velocity field is more easily evolved by solving the vertical vorticity equa-

tion. Consider the evolution of the 3-component of vorticity. Noting that W3j -= 0 and that ¢dju3, j _ 0 for

velocity fields described by a streamfunction one obtains

D

(57) -_w3 + ujw3,j = O.
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DO2As wi,3 -= 0 the equation is independent of the vertical vclocity, u3. Thus D_ 3 = 0 is a closed nonlinear

equation for the streamfunction from which the horizontal components, ul,u2, of the velocity are fully

determined. Recall that w3 -----V2¢ as is readily obtained from the curl of the velocity once the velocity is

expressed in terms of the stream function.

The third component of the velocity field, u3, is obtained from its momentum equation. With u_,3 -- 0

and P,3 : 0 the 3 momentum equation devolves into the linear equation describing the advection of a passive

scalar. The passive scalar is u3. For arbitrary frame rotation, u3 satisfies

D

(58) -_u3 + ulu3,1 + u_u3,_ = O.

This u3 equation is, of course, independent of the mean frame rotation.

The fact that two-dimensional velocity fields are materially frame indifferent, in the context of rotat-

ing flow systems, has been known for some time (Taylor, 1917, Hide, 1977). Thc utility of the principle

of materially frame indifference in the limit of two-dimensional flows has been suggested as a type of re-

alizability principle for turbulence models by Speziale (1981). Additional amplifications on the topic of

two-dimensional frame indifference arc given in Speziale (1989, 1997), Kassinos and Reynolds (1994), and

Ristorcelli (1997). The frame invariance of the modeled second moment equations has been implemented for

single-point turbulence closures relevant to AWMR flows of the geophysical type in Ristorcelli, Lumlcy and

hbid (1995).

Implications for Reynolds stress closures. In the Reynolds stress closure modeling of turbulent flows, one

requires a closure representation for the pressure-strain covariance, Launder, Reece and Rodi (1975). Thc

present results have important implications for pressure-strain closures. These results describe the behavior

of the Navier-Stokes equations in the limit of rapid rotation. The Reynolds stress equations, which arc

derived from the Navier Stokes equations, must, in the limit of rapid rotation, be consistent with these

results.

In Ristorcelli et al. (1995) the geostrophic balance, a diagnostic relationship between pressure and

velocity for AWMR flows for which Taylor-Proudman is relevant,

(59) 2W_juj ..m -P,i ;

has been employed to develop a sophisticated representation for the pressure-strain. This model has demon-

strated advantages over models not consistent with Taylor-Proudman results in rotating flow calculations.

One of the major results of this article is a new rotation-pressure balance of the momentum equations

for general rotating flows:

(60) (w_j + RTj)u_ _ -p,_.

This result is used by Girimaji (1997) to develop a pressure-strain covariance model for mean vorticity

dominated flows. The resulting pressure-strain model is the first of its class to distinguish between rotating

shear and elliptic flows, and produces excellent qualitative and quantitative agreement with DNS data of

elliptic and rotating flows.

Estimation of Ri_. Many important kinematic and dynamic properties of the fluctuating fields in a

rapidly rotated mean flow can be obtained provided that the Reynolds stress rotation rate (Ri_), which is
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alsothekinematicrotationrateofthefluctuatingfieldisknown.It wouldbcdesirableto specifyRi_ in terms

of mean velocity field variables. The kinematic rotation rate is likely to depend upon many factors: initial

condition, boundary condition and production-mechanism of the fluctuations. For a homogeneous rotating

flow in a fully developed state, the kinematic rotation rate is likely to depend only on the fluctuation

production-mechanism, which is the mean strain rate. We now investigate the dependence of R_% on the

mean strain rate. This qualitative analysis will provide a better physical insight into the difference between

the fluctuating fields of rotating shear flows and elliptic streamline flows.

From observations, it is well known that the angle between the principal axes of the mean strain and the

Reynolds stresses is constant in equilibrium turbulence. The Reynolds stress anisotropy attaining a constant

equilibrium value is a manifestation of the unchanging orientation between strain rate and Reynolds stresses.

The equilibrium behavior is observed in flows with reference frame rotation, as well as those with mean flow

vorticity. The rate of rotation of the Reynolds stresses must, then, coincide with the rotation of the strain

rate:

D D .
(61) nt (u* u_) ,,_ -_ S_j.

• In elliptic streamline flows, the strain rate is constant in magnitude and orientation. Thus in an

inertial reference frame:

(62) n,_ = O.

This indicates that velocity fluctuations in the elliptic mean streamline flow belong to the AWOR

class.

In rotating shear flows, the strain rate eigenvectors rotate with the mean flow when observed in an

inertial reference frame. The intrinsic mean vorticity, _Yij, and the rotation rate of the strain rate

are equal.

(63) Riaj -- Wij _- 2eikj_j

where 12j is the reference frame rotation rate. Therefore, the velocity fluctuations in the rotating

shear are likely to belong to the AWMR category.

5. Summary and Conclusion. The behavior of fluctuating motions subject to a general rapid rotation

has been investigated. The forms of rotation considered include reference-frame rotation, mean-flow rotation

and any arbitrary combinations of the two basic forms.

In the rapid rotation limit it has been demonstrated, §2.1, that the fluctuating velocity field advection,

to leading order, can be approximated by a kinematic rotation given by

D

(64) _-_u_ _ P_juj.

The kinematic rotation rate tensor P_j was shown to be equal to the rotation rate of the Reynolds stress

tensor. The advcction of fluctuating vorticity corresponding to a kinematically rotated velocity field is given

by

D 1 1 (Wjuj,i Rju_,j).(65) _-_ _ = -

14



Thesetwoequationsformthefoundationofthisstudy.Theintroductionof thesekinematicapproximations
intomomentumandvorticityequationsindicatedthebehaviorofthefluctuatingvelocityandpressurefields
in therapidrotationlimit. Therotatingflowswerecharacterizedaccordingto P_j, the rotation of thc

Reynolds stress tensor, and the behavior of each class was investigated in §3.

The results of the analysis for each class are summarized below:

• P_j -- Wij: This fluctuating velocity field is adveeted with mean-flow rotation ratc (AWMR). The

AWMR class of fluctuations can be associated with rcfcrcncc-framc rotation flows. The vorticity

and momentum equations, in this case, lead to the classical Taylor-Proudman theorem and the

geostrophic balance, respectively. The Taylor-Proudman theorem results from assuming that the

Lagrangian derivative, in the rotating reference frame, is small: in the rotating frame, on the time

scale of the rotation, the flow is frozen. This is tantamount to assuming, in an inertial frame, that

the Oldroyd derivative is small. In an inertial system, these fluctuations while rapidly varying,

are merely kinematically rotated. In the limit of rapid rotation the fluctuating velocity field is

two-dimensional independent of the axis of rotation - and horizontally non-divergent. The Taylor-

Proudman theorem and its consequences have substantial empirical validation: these results are

esscntial to understanding large (synoptic) scale geophysical flows taking place in the atmosphere

and the ocean. The geostrophic balance is used to produce weather maps.

• Rij _- 0: This fluctuating velocity field is advected without rotation by the mean flow (AWOR).

This class of fluctuations are likely to be associated with flows which have mean-flow rotation and

no reference frame rotation. For AWOR fluctuating velocity field the Lagrangian derivative, in an

inertial frame, is small; in the inertial frame, on the time scale of the rotation, the flow is frozen.

In the limit of rapid rotation, the vorticity equation indicates that the fluctuating velocity field is,

again, two-dimensional and horizontally non-divergent. However, the momentum equation indicates

a different balance between rotation and pressure forces. These results appear relevant to turbulence

closures of highly vortical flows of engineering interest.

• P_j -- R_: This class of fluctuations will be encountered in flows which are subjected to both

reference-frame and mean-flow rotations. The fluctuating velocity field is, again, two-dimensional

and horizontally non-divergent. The pressure-rotation balance, however, depends on the proportion

of reference-frame and mean-flow rotation.

The asymptotic limits of rapid rotation obtained in this paper are of substantial fundamental interest as

can be seen from their physical meaning, as well as the kinematic and dynamic consequences. These asymp-

totic states of rapidly rotating flows have important implications for turbulence modeling Speziale (1981,

1989, 1997), Kassinos and Reynolds (1994), Ristorcelli et al. (1995), Ristorcclli (1997). To be consistent

with Navier-Stokes equations, pressure-strain models of rapidly rotating flows must satisfy the geostrophic

constraint as implied by the Taylor-Proudman theorem. Ristorcelli et al. (1995) have employed this con-

straint to develop a pressure-strain covariance model for flows in rotating systems. In contradistinction, in

flows subjected to large mean vorticity, pressure-strains model must be consistent with a new geostrophic

constraint derived in this paper. This constraint is used by Girimaji (1997) to derive a pressure-strain model

able to predict the peculiar behavior of Reynolds stresses observed in the important elliptic streamline flows.
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